1. Balla E, Flórián N, Gergócs V, Gránicz L, Tóth F, Németh T, Dombos M. An opto-electronic sensor-ring to detect arthropods of significantly different body sizes. Sensors. 2020;20(4):982. DOI: 10.3390/s20040982 [
DOI] [
PMID] [
PMCID]
2. Balyen L, Peto T. Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology. Asia-Pacific Journal of Ophthalmology. 2019;8(3):264-72. [
DOI]
3. Braukmann TW, Ivanova NV, Prosser SW, Elbrecht V, Steinke D, Ratnasingham S, et al. Metabarcoding a diverse arthropod mock community. Molecular Ecology Resources. 2019;19(3):711-27. DOI: 10.1111/1755-0998.12994 [
DOI] [
PMID] [
PMCID]
4. Caraballo H, King K. Emergency department management of mosquito-borne illness: malaria, dengue, and West Nile virus. Emergency Medicine Practice. 2014;16(5):1-23; quiz 24. DOI: 10.1111/acem.12434 [
DOI] [
PMID]
5. Cardoso P, Erwin TL, Borges PA, New TR. The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation. 2011;144(11):2647-55. DOI: 10.1016/j.biocon.2011.07.024 [
DOI]
6. Chari K, Agrawal M. Impact of incorrect and new requirements on waterfall software project outcomes. Empirical Software Engineering. 2018;23:165-85. [
DOI]
7. Dong X, Yan N, Wei Y, editors. Insect sound recognition based on convolutional neural network. 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC); 2018: IEEE. [
DOI]
8. Elbrecht V, Braukmann TW, Ivanova NV, Prosser SW, Hajibabaei M, Wright M, et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ. 2019;7:e7745. DOI: 10.7717/peerj.7745 [
DOI] [
PMID] [
PMCID]
9. Elbrecht V, Leese F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS One. 2015;10(7):e0130324. DOI: 10.1371/journal.pone.0130324 [
DOI] [
PMID] [
PMCID]
10. Gebru A, Jansson S, Ignell R, Kirkeby C, Prangsma JC, Brydegaard M. Multiband modulation spectroscopy for the determination of sex and species of mosquitoes in flight. Journal of Biophotonics. 2018;11(8):e201800014. DOI: 10.1002/jbio.201800014 [
DOI] [
PMID]
11. Genoud AP, Basistyy R, Williams GM, Thomas BP. Optical remote sensing for monitoring flying mosquitoes, gender identification and discussion on species identification. Applied Physics B. 2018;124:1-11. [
DOI] [
PMID] [
PMCID]
12. González García C, Núñez Valdéz ER, García Díaz V, Pelayo García-Bustelo BC, Cueva Lovelle JM. A review of artificial intelligence in the internet of things. International Journal of Interactive Multimedia and Artificial Intelligence. 2019;5. [
DOI]
13. Holmström O, Stenman S, Suutala A, Moilanen H, Kücükel H, Ngasala B, et al. A novel deep learning-based point-of-care diagnostic method for detecting Plasmodium falciparum with fluorescence digital microscopy. PLoS One. 2020;15(11):e0242355. DOI: 10.1371/journal.pone.0242355 [
DOI] [
PMID] [
PMCID]
14. Hortal J, de Bello F, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics. 2015;46:523-49. DOI: 10.1146/annurev-ecolsys-112414-054133 [
DOI]
15. Høye TT, Ärje J, Bjerge K, Hansen OL, Iosifidis A, Leese F, et al. Deep learning and computer vision will transform entomology. Proceedings of the National Academy of Sciences. 2021;118(2):e2002545117. DOI: 10.1073/pnas.2002545117 [
DOI] [
PMID] [
PMCID]
16. Javaid M, Haleem A, Singh RP, Suman R, Rab S. Significance of machine learning in healthcare: Features, pillars and applications. International Journal of Intelligent Networks. 2022;3:58-73. DOI: 10.1016/j.ijin.2022.05.002 [
DOI]
17. Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science. 2015;349(6245):255-60. [
DOI] [
PMID]
18. Južnič-Zonta Ž, Sanpera-Calbet I, Eritja R, Palmer JR, Escobar A, Garriga J, et al. Mosquito alert: leveraging citizen science to create a GBIF mosquito occurrence dataset. Gigabyte. 2022 [
Google Scholar]
19. Kalamatianos R, Karydis I, Doukakis D, Avlonitis M. DIRT: The dacus image recognition toolkit. Journal of Imaging. 2018;4(11):129. DOI: 10.3390/jimaging4110129 [
DOI]
20. Ke-Chen S, Yun-Hui Y, Wen-Hui C, Zhang X. Research and perspective on local binary pattern. Acta Automatica Sinica. 2013;39(6):730-44. [
DOI]
21. Khalighifar A, Jiménez-García D, Campbell LP, Ahadji-Dabla KM, Aboagye-Antwi F, Ibarra-Juárez LA, et al. Application of deep learning to community-science-based mosquito monitoring and detection of novel species. Journal of Medical Entomology. 2022;59(1):355-62. DOI: 10.1093/jme/tjab134 [
DOI] [
PMID]
22. Khalighifar A, Komp E, Ramsey JM, Gurgel-Gonçalves R, Peterson AT. Deep learning algorithms improve automated identification of Chagas disease vectors. Journal of Medical Entomology. 2019;56(5):1404-10. DOI: 10.1093/jme/tjz099 [
DOI] [
PMID]
23. Kirkeby C, Rydhmer K, Cook SM, Strand A, Torrance MT, Swain JL, et al. Advances in automatic identification of flying insects using optical sensors and machine learning. Scientific Reports. 2021;11(1):1555. DOI: 10.1038/s41598-021-81034-9 [
DOI] [
PMID] [
PMCID]
24. Kiskin I, Zilli D, Li Y, Sinka M, Willis K, Roberts S. Bioacoustic detection with wavelet-conditioned convolutional neural networks. Neural Computing and Applications. 2020;32:915-27. [
DOI]
25. Kittichai V, Pengsakul T, Chumchuen K, Samung Y, Sriwichai P, Phatthamolrat N, et al. Deep learning approaches for challenging species and gender identification of mosquito vectors. Scientific Reports. 2021;11(1):4838. DOI: 10.1038/s41598-021-84411-4 [
DOI] [
PMID] [
PMCID]
26. Krampa FD, Aniweh Y, Awandare GA, Kanyong P. Recent progress in the development of diagnostic tests for malaria. Diagnostics. 2017;7(3):54. DOI: 10.3390/diagnostics7030054 [
DOI] [
PMID] [
PMCID]
27. Krehenwinkel H, Wolf M, Lim JY, Rominger AJ, Simison WB, Gillespie RG. Estimating and mitigating amplification bias in qualitative and quantitative arthropod metabarcoding. Scientific Reports. 2017;7(1):17668. DOI: 10.1038/s41598-017-17944-4 [
DOI] [
PMID] [
PMCID]
28. Kumari U, Memon MM, Narejo S, Afzal M, editors. Malaria disease detection using machine learning. 2nd International Conference on Computational Sciences and Technologies (INCCST 20); 2020. [
Google Scholar]
29. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44. DOI: 10.1038/nature14539 [
DOI] [
PMID]
30. Ligsay A, Telle O, Paul R. Challenges to mitigating the urban health burden of mosquito-borne diseases in the face of climate change. International Journal of Environmental Research and Public Health. 2021;18(9):5035. DOI: 10.3390/ijerph18095035 [
DOI] [
PMID] [
PMCID]
31. Lipton R, Schwedt T, Friedman B, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545-602. DOI: 10.1016/S0140-6736(16)31678-6 [
DOI] [
PMID]
32. Martin J. Malaria. Nurs Stand. 2001;15(26):47-52; quiz 4-5. [
DOI] [
PMID]
33. Montgomery GA, Dunn RR, Fox R, Jongejans E, Leather SR, Saunders ME, et al. Is the insect apocalypse upon us? How to find out. Biological Conservation. 2020;241:108327. DOI: 10.1016/j.biocon.2020.108327 [
DOI]
34. Ong OT, Kho EA, Esperança PM, Freebairn C, Dowell FE, Devine GJ, Churcher TS. Ability of near-infrared spectroscopy and chemometrics to predict the age of mosquitoes reared under different conditions. Parasites & Vectors. 2020;13(1):1-10. [
DOI] [
PMID] [
PMCID]
35. Organization WH. World malaria report 2014: summary. World Health Organization; 2015. [
URL]
36. Parveen R, Jalbani AH, Shaikh M, Memon KH, Siraj S, Nabi M, Lakho S. Prediction of malaria using artificial neural network. Int J Comput Sci Netw Secur. 2017;17(12):79-86. [
Google Scholar]
37. Pecere S, Milluzzo SM, Esposito G, Dilaghi E, Telese A, Eusebi LH. Applications of artificial intelligence for the diagnosis of gastrointestinal diseases. Diagnostics. 2021;11(9):1575. DOI: 10.3390/diagnostics11091575 [
DOI] [
PMID] [
PMCID]
38. Peiffer-Smadja N, Dellière S, Rodriguez C, Birgand G, Lescure F-X, Fourati S, et al. Machine learning in the clinical microbiology laboratory: has the time come for routine practice? Clinical Microbiology and Infection. 2020;26(10):1300-9. DOI: 10.1016/j.cmi.2020.06.024 [
DOI] [
PMID] [
PMCID]
39. Potamitis I, Eliopoulos P, Rigakis I. Automated remote insect surveillance at a global scale and the internet of things. Robotics. 2017;6(3):19. DOI: 10.3390/robotics6030019 [
DOI]
40. Raja DB, Mallol R, Ting CY, Kamaludin F, Ahmad R, Ismail S, et al. Artificial intelligence model as predictor for dengue outbreaks. Malaysian Journal of Public Health Medicine. 2019;19(2):103-8. [
DOI]
41. Redmon J, Farhadi A. Yolov3: An incremental improvement. arXiv preprint arXiv:180402767. 2018. [
Google Scholar]
42. Sun Y, Liu X, Yuan M, Ren L, Wang J, Chen Z. Automatic in-trap pest detection using deep learning for pheromone-based Dendroctonus valens monitoring. Biosystems Engineering. 2018;176:140-50. DOI: 10.1016/j.biosystemseng.2018.08.012 [
DOI]
43. Wagner DL. Insect declines in the Anthropocene. Annual Review of Entomology. 2020;65:457-80. [
DOI] [
PMID]
44. da Silva Motta D, Badaró R, Santos A, Kirchner F. Use of Artificial Intelligence on the Control of Vector-Borne Diseases. Vectors and Vector-Borne Zoonotic Diseases. 2018. DOI: 10.1089/vbz.2017.2234 [
DOI] [
PMID] [
PMCID]
45. Ärje J, Melvad C, Jeppesen MR, Madsen SA, Raitoharju J, Rasmussen MS, et al. Automatic image‐based identification and biomass estimation of invertebrates. Methods in Ecology and Evolution. 2020;11(8):922-31. DOI: 10.1111/2041-210X.13444 [
DOI]