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Abstract 
The severe acute respiratory syndrome coronavirus 2 (known as COVID-19), initially appeared in the Wuhan city of China in December 

2019, has become a current medical issue around the world. Due to its highly contagious nature, COVID-19 has spread widely to all 

countries. As no effective treatment or vaccine is developed for this infectious disease, preventive measures are the only mandatory 

strategy to stop its human-to-human transmission. In the present spread of COVID-19, the discovery of antiviral drugs is crucially 

important as the development of these drugs often takes time. However, no specific drug has yet been approved for COVID-19. In this 

review, we focus on the available drug candidates used for the treatment of infections caused by COVID-19 to identify potential 

inhibitors through molecular docking. 
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Introduction  

In December 2019, a series of acute atypical 
respiratory diseases occurred in the Wuhan city of China 
and rapidly spread to other regions of the world. The 
outbreak was declared a public health emergency of 
international concern on 30 January 2020 (1).  

Coronaviruses are known for the crown-like (corona 
in Latin) spikes with a diameter of 70 to 160 nm, as 
detected by electron microscopy. Structurally, 2019-
novel coronavirus (nCoV) possesses the enveloped 

positive-sense single-stranded RNA genome. The virus 
has glycoprotein spikes on its surface, giving it a crown-
like appearance (2, 3). With the spread of 2019-nCoV, 
many efforts are being made to reveal detailed 
information about the epidemiology and pathogenesis of 
COVID-19, and more importantly, to develop methods 
to reduce its consequences (4-6). In virtue of obligatory 
isolation/quarantine, this virus has had many adverse 
and far-reaching effects not only on the global economy 
but also on the lives of millions of people (7).  
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Development of new drug is a time-consuming 
process due to expensive clinical trials, potential errors, 
and other difficulties. Therefore, today's bioinformatics 
tools, such as molecular docking, simulation, chemical 
stability research, and target determination, play an 
indispensable innovative role in the design of new drugs 
(8). In the absence of special drugs or vaccines during 
the  SARS-CoV-2 pandemic, drug repositioning or drug 
repurposing acts a fascinating role; however, such drugs 
require clinical trials to prove their effectiveness against 
the disease (9).  

Molecular docking is a tool in drug discovery and a 
computer-aided drug design technology. This method, 
uses computer technology to simulate the geometric 
structure of molecules and the interaction between 
molecules through stoichiometric calculation methods 
(10, 11). During molecular modeling approaches of 
finding potential inhibitors, special emphasis is placed 
on the significance of binding affinity of ligand-protein 
complexes and their drug-likeness features (12). In 
molecular docking, which is very much like lock-key 
model, the molecule binds to different parts of the 
receptor and explains the binding affinity in the form of 
energy. This approach is able to generate possible 
conformation, directions, or positions in which 
molecules or compounds bind to the receptors (13, 14). 
However, it should be pointed out that the biological 
activity of these molecules is also highly important. 
Computational tools provide new testable hypotheses 
for the discovery of conventional drugs involving 2019-
nCoV (15, 16).  

Computational techniques like molecular docking, 
drug-likeness screening, simulations, and others can 
help the exploration of COVID-19 (17, 18). Recently, 
virtual screening technology has been carried out 
through molecular docking and cell-based analysis to 
identify the active sites on viral proteases that bind to 
many natural compounds (19-21). Clinical trials to 
evaluate the efficacy of antiviral drugs available for 

COVID-19 are still ongoing, and there are various types 
of antiviral drugs used globally.  

Coronaviruses are enveloped structures. Their RNA 
nucleic acid is positive and single-stranded, meaning 
that they can infect humans and animals. SARS-CoV-2 
is composed of structural proteins, such as membrane, 
envelope, and spike protein. Among these proteins, the 
club-shaped spike glycoprotein (SGp) interacts with the 
angiotensin-converting enzyme 2 (ACE2) of human 
cells and cause the SARS-CoV-2 virus to enter the cell 
(22, 23). The sequence of SARS-CoV-2 genome 
revealed that it encodes 16–17 nonstructural proteins. 
Two proteases, papain-like protease (PLpro) and 3-
chymotrypsin-like protease (3CLpro), also known as 
Mpro, are essential for virus maturation and infectivity 
(24-27). After releasing the structure of SARS-CoV-2 
proteins (such as Mpro, RdRp [RNA-dependent RNA 
polymerase], SGp, etc.) and genome sequence (28-31), 
a structure-based molecular docking study and 
simulation were conducted to identify the most effective 
inhibitors. This information was obtained from the 
RCSB protein data bank (https://www.rcsb.org/), which 
houses approved medications and phytochemicals with 
medical significance (32, 33). Molecular docking 
method assist researchers in designing effective drugs or 
potential drug candidates using the principles of drug 
design. This method also helps repurpose already 
existing drugs showing inhibitory activity based on the 
rationale of structure-based drug designing, which 
focuses on the key structural features of a protein and 
identifies the potent inhibitors based on the concept of 
estimated free energy of binding and the formation of 
various intermolecular interactions, e.g. hydrogen 
bonds, hydrophobic interactions, and van der Waals 
interactions (34-36). Herein, we summarize the antiviral 
drugs and compounds that may be used for SARS-CoV-
2 infection. We hope this review could help scientists, 
clinicians, and the pharmaceutical industry to find new 
treatments for COVID-19. 
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Fig. 1. Scheme of SARS-CoV-2 and some of its molecular protein targets. 
 

SARS-CoV-2 Mpro/3CLpro: 
COVID-19 is the source of 3CLpro, also known as 

Mpro. As Mpro/3CLpro plays a key role in the growth 
and spread of the virus, it represents a potential target 
for inhibiting CoV replication (37). The genome of the 
coronavirus encodes two proteins, ppla and pplb, which 
are involved in spike, membrane, envelope, 
nucleoprotein, replication, and polymerase activities. 
Protease activity can be neutralized by antiviral drugs 
called protease inhibitors, which selectively bind to the 
catalytic site of the enzyme and inhibit the production of 
infectious virus particles (2, 38). It has been also shown 
that SARS-3CLpro is a cysteine protease essential to the 
virus life cycle (39). The lack of effective 3CLpro 
inhibitors and the availability of x-ray crystal structure 
of 3CLpro persuaded researchers to conduct 
computational studies to identify potential 
commercially available inhibitors (40). Mpro/3CLpro 
has been successfully crystallized from COVID-19, and 
its structure has been mechanically adjusted and 
repositioned in the protein database (PDB) of the 
imported chimera to visualize the binding domain of the 
complex and identify the amino acids in the binding 
pocket. It is now accessible to the general public and can 
be used to understand binding domains of complexes 
(41, 42). 

Researchers tried different treatments to determine 
potential inhibitors against the SARS-CoV-2 Mpro 
protein using computational methods. For instance, 
Hosseini et al. relied on the efficiency of the repurposing 
concept, combined with molecular docking and 
molecular dynamics simulation methods (43). They 
concluded that simeprevir and pyrrolidine could be 
potential drug candidates for the treatment of COVID-
19. Simeprevir docked with 3CLpro (PDB Id: 6LU7) 
with a binding affinity of -252.54 kcal/mol and a 
docking score of 11.33 via strong hydrogen bonding (3 
bonds) residues Asn 119, His 163, and Thr 26 and three 
sigma and pi interactions with other key substrate 
residues. Another study identified flavonoids (eleven 
known compounds isolated from the aqueous extract of 
Salvadora persica aerial parts) as an inhibitor with an 
estimated binding free energy of -7.76 kcal/mol. As 
shown in Figure 2, flavonoids are stabilized at the N3 
binding site of Mpro through several variable 
electrostatic bonds (44). In a similar study, by using 
computational modeling strategies, the biological 
activities of selected heterocyclic drugs (favipiravir, 
amodiaquine, 2'-Fluoro-2'-deoxycytidine, and ribavirin) 
were evaluated as an inhibitor of COVID-19 agents and 
nucleotide analogs. Compared to favipiravir, 20-fluoro-
20-deoxycytidine, ribavirin, and amodiaquine showed 
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the lowest binding energy (-7.77 kcal/mol). The drug 
and the receptor's amino acid residues interact 

hydrophobically in three different ways and through 
three hydrogen bonds (45).

 
 

Fig. 2. (a) 2D and (b) 3D representation of docking of flavonoid into the N3 binding site of the COVID-19 Mpro 
(44). 

 
 In a drug repurposing study, ribavirin, telbivudine, 

vitamin B12, and nicotinamide were suggested as 
COVID-19 inhibitors with docking scores of 2.00, 2.01, 
1.99, and 1.92, respectively. Theoretical calculations 
illustrated that ribavirin and telbivudine formed two 
hydrogen bonds with the backbone of THR25 and 
SER49 and the side chain of GLN189 and GLV189, 
respectively (46). Das et al. studied small-molecule 
inhibitors that may bind to the active site of SARS-CoV-
2 protease (PDB: 6Y84) (47). Rutin, a natural compound 
known as vitamin P, showed the highest inhibitory 
activity by blind molecular docking analysis (six 
hydrogen bonding) and displayed an estimated binding 
free energy of -9.55 kcal/mol. Catalytic residues such as 
His41 and Cys145 interact with the π-alkyl and π-sulfur 
bonds of the aromatic backbone of the ligand. It 
indicates six hydrogen bonds and additional van der 

Waals interactions to stabilize the interaction between 
protein and ligand (48). Another similar study explored 
the combination score of ritonavir (antiviral drug) and 
3CLpro (PDB ID: 6Y84), which was shown to be -8.12. 
The hydroxyl group of the ligand forms an arene-H bond 
with Met165 residues (49). Furthermore, Ryu et al. 
corroborated that quercetin demonstrated a promising 
inhibitory effect on SARS-CoV 3CLpro expressed in 
Pichia pastoris, with an inhibitory rate of 82% (50). In 
another interesting study, saquinavir, aclarubicin, 
TMC‑310911, and faldaprevir were suggested as 
potential 3CLpro inhibitors with binding energies of -
125, -150, -151, and -123 kJ/mol, respectively (51). 
Through virtual screening of synthetic and natural 
compound libraries, some computational studies have 
been conducted to identify anti-3CLpro inhibitors from 
SARS-CoV-2 (Table 1). 
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Table 1. Existing promising and potential molecules against 3CLpro/Mpro from SARS CoV-2 

 
Drug 

candidate 
Structure indication 

Binding 

free 

energy 

(kcal/m

ol) 

Interacting 

residues 

R
ef

er
en

ce
s 

1 DB02388 

 

    Not available -49.67 

GLU166, TYR54, 

and ASP187 

(hydrogen bonds) 

(52) 

2 Luteolin 

 

Antioxidant, anti-

inflammatory 
-28.88 

 

 
(53) 

3 Simeprevir 

 

Treatment of 

HCV 
-11.33 

Asn119, His163, 

and Cys145 

(hydrogen bonds) 

His41 (Sigma and 

Pi interactions) 

(54) 
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4 Chloroquine 

 

Antimalarial, 

anti-

inflammatory 

-10.8 

HIS164, ASN142, 

CYS145, ARG188, 

and GLU166 

(hydrogen bonds) 

PRO168 (Pi 

interactions) 

(55) 

5 Beclabuvir 

 

Treatment of 

HCV 
-10.4 

 

 
(56) 

6 Withanoside V 

 

Phytochemicals 

of ayurvedic 

medicinal plants 

10.32 

ASN84, ARG40, 

and MET82 

(hydrogen bonds) 

CYS85, ARG105, 

and PHE134 (Pi 

interactions) 

(57, 

58) 

7 
Chlorpromazin

e 

 

Antipsychotic 

drug 
−10.1 

His163 (hydrogen 

bonds) 
(59) 
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8 

10-

Hydroxyusamb

arensine 

 

Antimalarial −10.1 

GLN189 and 

TYR54 (hydrogen 

bonds) PHE294, 

and PRO293 (Pi 

interactions)  

(60) 

9 Pepstatin A 

 

Inhibitor of acid 

proteases 
-9.9 

 

 
(61) 

10 Allegra 

 

Anti-histamine -9.6 

Thr111, Asn151, 

and Asp153 

(hydrogen bonds) 

(62) 

11 Paritaprevir 

 

Treatment of 

HCV 
-9.5 

Cys145 and 

MET49 (Pi-Sigma)  

HIS41, GLN189, 

THR26, ASN119, 

and GLY143 

(hydrogen bonds) 

(63) 

12 
Leupeptin 

hemisulfate 

 

Inhibitor of serine 

and cysteine 

proteases 

-9.3  (61) 
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13 Kaempferitrin 

O O

HO
OH

OH

OHO

O
OO

OH

HO

HO

OH
OH

 

An 

immunomodulato

r, an anti-

inflammatory 

agent 

-8.63 

Thr190, Thr26, 

Gly143, and 

Gln192 amino acids 

(hydrogen bonds) 

(64) 

14 Nelfinavir 

 

Antiretroviral 

drug 
-8.4 

 LEU282, PHE291, 

GLN127, GLY283, 

LYS137, GLY138 

and TYR126 

(58, 

65) 

15 Atovaquone 

 

For treating 

Pneumocystis 

carinii pneumonia 

and malaria 

-8.2 
Thr199 (hydrogen 

bonds) 
(62) 

16 

Imidazolidin-4-

one, 

2-imino-1-(4-

methoxy-6- 

dimethylamino-

1,3,5-triazin-2-

yl) 

 

    Not available −7.013 
Glu166 and Gln192 

(hydrogen bonds) 
(66) 
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17 Azithromycin  

 

Antibiotic -6.3 
Leu272 (hydrogen 

bonds) 
(67) 

18 Baricitinib 

 

Anti-

inflammatory, 

immunomodulati

ng and 

antineoplastic 

-6.3 

Asp197, Leu287, 

and Lys137 

(hydrogen bonds) 

(67) 

19 Nigellidine 

 

    Not available -6.3 
HIS 163 (hydrogen 

bonds) 
(68) 

20 ZINC00793735 

 

    Not available -6.20 

GLN189 (hydrogen 

bonds) LEU141 

and HIE41 (Pi 

interactions) 

(69) 

 
Angiotensin-converting enzyme2: 

ACE2, a protein on the surface of many cell types, 
can produce small proteins by chopping up the larger 
protein angiotensin, and then continuing to regulate cell 
functions (70). It is known that ACE2 is expressed in 
various human organs, and its organ and cell-specific 
expression indicate that it may play a role in regulating 
cardiovascular, renal functions, and fertility (71). In 
addition, the encoded protein is the functional receptor 
for the spike glycoprotein of human coronavirus and 

human severe acute respiratory syndrome coronavirus 
SARS-CoV and SARS-CoV-2, which the latter is the 
cause of coronavirus disease factor (COVID-19). The 
SARS-CoV-2 virus uses spike-like proteins on its 
surface to bind to ACE2 before entering and infecting 
cells, just like inserting a key into a lock (72, 73). 
Therefore, ACE2 acts as a gate receptor for the virus that 
causes COVID-19. In addition, ACE2 is a vital element 
in the biochemical pathway and essential for the 
regulation of blood pressure, wound healing, and 
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inflammation (74). The pathway is known as the renin-
angiotensin-aldosterone system. ACE2 helps regulate 
many activities of a protein called angiotensin II (ANG 
II), which increases blood pressure and inflammation, 
enhances damage to the vascular intima and causes 
various types of tissue damage (75, 76). ACE2 converts 
ANG II into other molecules that can counteract the 
effects of ANG II. When the SARS-CoV-2 virus binds 
to ACE2, it prevents ACE2 from performing its normal 
function to regulate ANG II signaling. Therefore, the 
effect of ACE2 is "suppressed", eliminating the brakes 
from the ANG II signal, allowing more ANG II to be 
used to damage tissues. This reduced immobilization 
may cause injuries to COVID-19 patients, especially 
lung and heart injuries (77). The traditional Chinese 
medicine ingredient Huoxiang zhengqi oral solution can 
be combined with ACE2 through network 
pharmacology and molecular docking, targeting 
PTGS2, CAMSAP2, and other targets, thereby 
preventing and controlling COVID-19 (78). 

An investigation by Lestari et al. exhibited the 
connection of three quinoline-based antimalarial drugs 
(chloroquine, hydroxychloroquine, and quinine) with 
the peptidase space of the ACE2 receptor (79). Among 
these three compounds, quinine had the strongest 
affinity (-4.89 kcal/mol) for the ACE2 receptor (PDB 
ID: 6VW1). It interacts with Lys353 via hydrogen 
bonding and forms positive ionizable bonds with His34 
and Glu. Dithymoquinone, the main component of 
Nigella sativa, through absorption, distribution, 
metabolism, and excretion analysis (ADME) showed 
high solubility and intestinal absorption and indicated an 
estimated binding free energy of -8.6 kcal/mol through 
Autodock/vina (three hydrogen bonds and one ionic 
interaction with LYS31 residues) (80). In a similar 
study, nigellidine indicated a binding affinity of -6.11 
kcal/mol when docked with ACE2 through hydrogen 
bonding residue, namely GLU166 (81). Another study 
revealed the active ingredients and potential molecular 
mechanisms through which Cold‒Damp Plague 
Formula treatment can effectively fight COVID-19. Han 
et al. identified L-tyrosine as an inhibitor with an 
estimated binding free energy of -6.5 kcal/mol using 

Autodock Vina, where ACE2 was mainly connected 
through amino acid residues Ala413, Phe438, Thr434, 
Asn437, Ile291, Asn290, and Pro289 (82). In a drug 
repurposing study, quercetin showed a minimum 
binding free energy of -8.4 kcal/mol, which was almost 
equal to the control drug (ritonavir = -8.5 kcal/mol). It 
manifested four hydrogen bonds with the amino acid 
residues Lys745, Tyr613, His493, and Asp609 (74). In 
a study of chemical compounds from traditional 
Mongolian medicine, Phillyrin and chlorogenic acid 
showed stable estimated binding affinity and ADME 
properties. When docked against ACE2 (PDB ID: 
2AJF), both compounds exhibited interactions with the 
active site residues, strong hydrogen bonding 
interactions, and potent stability of the protein-ligand 
complex (83). Another virtual screening study using 
molecular docking identified two antimalarial 
compounds, chloroquine and hydroxychloroquine, as 
likely inhibitors of ACE2 with a binding affinity of -7.1 
and -6.8 kcal/mol, respectively (84). 

 
RNA-dependent RNA polymerase: 

RdRp is involved in the replication and transcription 
of all RNA-containing viruses with no DNA stage such 
as the SARS-CoV-2 genome (85). RdRp is a vital 
enzyme in the life cycle of RNA viruses. As a result, it 
has become a target for many viral infections, including 
hepatitis C virus, Zika virus, and coronavirus. The active 
site of RdRp is highly conserved, and there are two 
continuous and surface-accessible aspartic acids in the 
β-turn structure (86, 87). By targeting the virus-specific 
RdRp, several antiviral drugs have been developed 
against the Zika virus, hepatitis C, and other 
coronaviruses. A recent study explored that the antiviral 
drugs remdesivir and favilavir can be used to treat 
several RNA virus diseases. These drugs effectively 
inhibit RdRp and RNA polymerase and play an 
important role in the replication of SARS-CoV-2 in vitro 
(42, 88-91). 

Recently, Elfiky conducted an investigation on 
approved antiviral drugs for different viral RdRps, such 
as galidesivir, remdesivir, tenofovir, YAK, sofosbuvir, 
IDX-184, etc. (89). Among these drugs, setrobuvir, 
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IDX-184, and YAK compounds showed excellent 
results in binding to SARS-CoV-2 RdRp, with binding 
energies of -9.3, -9.0 and -8.4 kcal/mol, respectively. 
Figure 3 depicts established interactions after docking 

with setrobuvir forming 3H-bonds (R444 (2) and K689), 
three hydrophobic contacts (D509, K689, and E702), 
and a cation interaction with R444. 

 

Fig. 3. Interactions established after docking the IDX-184, setrobuvir, and YAK against SARS-CoV-2 RdRp (89). 
 

In Yu et al.’s study, luteolin displayed an estimated 
binding affinity of -7.5 kcal/mol using Autodock Vina 
when docked against RdRp (PDB ID: 6NUS) of SARS-
CoV-2 with three hydrogen bonds (92). In another 
study, favipiravir analog CID89869520 indicated stable 
binding free energy of -5.1 kcal/mol by Autodock and 
ADME properties, which were more negative than 
favipiravir binding affinity (-4.9 kcal/ mol). It forms 
three hydrogen bonds with Lys798, Trp800, and Asp761 
residues (93). Chang et al. used computational 
methodologies to repurpose HIV protease inhibitors and 
nucleotide analogs for COVID-19 (94). Through two 
independent MD simulations (Autodock Vina and 
RosettaCommons), it was observed that remdesivir has 
the highest docking score (-7.8). Comparison of docking 
sites between remdesivir and other drug candidates 
showed that the overlap area of remdesivir was almost 
perfect for docking protein pockets. Another virtual 
screening study identified diosgenin, a natural product 
found in Dioscorea (wild yam) species, as a potential 
inhibitors of RdRp binding affinity of -9.1 kcal/mol 
(95). In a drug repurposing study, the limonin molecule, 

a crystalline substance found in citrus and other plants, 
exhibited minimum binding free energy (-9.0 kcal/mol). 
It formed three hydrogen bonds with the residues of 
THR556, SER682, and LYS621 that maintain a strong 
affinity with the target protein, 3 π-alkyl interactions, 
and several other stabilizing vans der Waals interactions 
(96). 

 
Papain-like protease: 

PLpro is an essential COVID-19 enzyme, which is 
required to process virus polyproteins to produce 
functional replicase complexes and enable the virus to 
spread (97). PLpro is also involved in the post-
translational modification of the cleavage of the host 
protein as an evasion mechanism against the host's 
antiviral immune response (98, 99). Sahoo and Vardhan 
studied the molecular docking of influenza antiviral 
drugs baloxavir acid (BXA) and baloxavir marboxil 
(BXM), and PLpro protein (PDB ID: 4MM3). The drugs 
BXA and BXM bound to the protein PLpro, and their 
dock scores were -8.9 to -7.2 kcal/mol and -7.0 to  
-6.5 kcal/mol, respectively, but computer-based protein-
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ligand interaction studies showed that there was no 
binding posture as the active site, composed of three 
catalytic triads of PLpro (CYS112, HIS273, and 
ASP287) (100). In another study, the effectiveness of 
ivermectin (antiparasitic agent) and doxycycline 
(antibiotic) in COVID-19 was explored (101). The 

predicted binding energies of ivermectin and 
doxycycline to PLpro (PDB ID: 6w9c) were -8.5 and  
-7.1 kcal/mol, respectively. Figure 4 shows the active 
binding site and 2D interaction of ivermectin and 
doxycycline with SARS-CoV-2 PLpro. 

 

Fig 4. The binding site of ivermectin and doxycycline with SARS-CoV-2 PLpro and their interactions (101). 
 
 
Spike protein: 

Spike protein is a crucial recognition factor for virus 
attachment and entry into host cells. It exists on the outer 
surface of the virion in a homotrimeric state. The CoV 
spike protein binds to the host cell membrane through 
receptor-mediated interactions that allow entry into the 
host cell (71). Although there are structural similarities 
between the SARS-CoV-2 spike protein and the SARS 
spike protein, the conservation is only 73% and most of 
the mutations are in the host cell interaction region of 
the protein (102). In one specific study, the binding free 
energy prediction in interaction with spike proteins for 
eriodictyol was found to be approximate -7.5 kcal/mol 
(103). Hall and Ji studied several drugs to target the 
SARS-CoV-2 spike protein. They identified that 
coenzyme A has the highest binding affinity (-11.5 
kcal/mol) among the candidate drugs (104). 

 

 
Conclusion  

The high transmission rate of SARS-CoV-2 has led 
to the current COVID-19 pandemic, with infections all 
over the world, and more than 1 million deaths 
worldwide. While clinical trials of the ideal vaccine 
continue, it is essential to find alternative antiviral 
candidates to prevent the further spread of the virus. Due 
to virus rapid development, timely drug development for 
the treatment of 2019-nCoV is important. At present, it 
is important to control the source of infection, cut off the 
route of transmission, and use existing drugs and 
methods to actively control the progression of the 
disease. In this review, we focus on using potential drug 
candidates to treat infections caused by 2019-nCoV to 
identify potential inhibitors through molecular docking. 
Although these drugs are expected to become special for 
the treatment of COVID-19, care must be taken when 
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using these drugs when there is insufficient evidence to 
prove their effectiveness and safety. 
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